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We study the properties of one-dimensional gapped Heisenberg antiferromagnets in the presence of a
strong staggered magnetic field. For these systems we predict a universal form for the staggered magne-
tization curve. This function, as well as the effect the staggered field has on the energy gaps in longitu-
dinal and transversal excitation spectra, is determined from the universal form of the effective potential
in O(3)-symmetric(1 + 1)-dimensional field theory. Our theoretical findings are in excellent agree-
ment with recent neutron scattering data ®BaNiOs (R = magnetic rare earth) linear-chain mixed
spin antiferromagnets. [S0031-9007(98)06459-X]

PACS numbers: 75.10.Jm, 75.30.Cr, 75.40.Cx

One-dimensional isotropic Heisenberg antiferromagso that the transverse excitations on the Haldane chains
nets with an exchange gap in the magnetic excitatiomre effectively decoupled from those on tResubsys-
spectrum have been at the center of theoretical and exem. Thus the effect of the staggered field on transversal
perimental attention for almost two decades. This classnagnetic excitation spectrum of an isolated NHaldane
of materials includesntegerspin Heisenberg chains [1] chain could be measured experimentally [10].

(commonly referred to as Haldane-gap systems) and half- In [8] we gave a qualitative theoretical description of
integer spin ladders with aevennumber of legs [2]. quantum disordered antiferromagnets in the presence of
Because of the presence of strong quantum fluctuatiors staggered magnetic field and discussed the results in
in these systems the staggered magnetization has a finitelevance to existing data aR,BaNiOs materials. The
correlation length. The principal feature of the excitationprincipal conclusion was that in a weak staggered field
spectrum is a degenerate triplet of sharp spin-1 excitathe energy gap increases in proportion to the square
tions commonly referred to as magnons, separated frorf induced staggered moment on the Haldane chains. It
the ground state by a finite energy gap In recent years was also shown that a staggered field partially lifts the
much work was aimed at understanding the behavior oflegeneracy of the magnon triplet, the gap in the longi-
such gapped 1D antiferromagnets in the presence of an etudinal mode being 3 times more sensitive A than
ternaluniform magnetic field [3—5]. However, the effect that in two transversal magnons. In the present paper
of a staggeredield that couples directly to the order pa- we refine this approach and obtaguantitative predic-
rameter of the classical system has not been investigatabns that we directly compare to recent experimental data
in sufficient detail. This is mainly due to the fact that afor (Nd,Y—,),BaNiOs. We demonstrate that the behav-
strong magnetic field modulated on the microscopic scalér of both transversal and longitudinal energy gaps in
was thought to be all but impossible to realize experi-the presence of a staggered field is contained in the stag-
mentally [6]. A breakthrough came with neutron scatter-gered magnetization cun,(H;). Our central result is

ing experiments omR,BaNiOs (R = magnetic rare earth) that for a variety of gapped one-dimensional antiferro-
linear-chain nickelates and their interpretation in terms oimagnetsM,(H,) has auniversalshape defined by three
noninteracting Haldane spin chains immersed in a strongxperimentally accessible parameters: zero-field magnon
effective staggered exchange field [7,8]. maBaNiOs  energy gap\, spin-wave velocity, and the renormaliza-
compounds almost perfectly isotropic antiferromagnetidion constantZ, related to the residue of the magnon pole
S = 1 chains are formed by the Ni ions. The effec- atH, = 0.

tive staggered field is generated by #&" sublattice that A traditional theoretical description of spin dynamics
becomes ordered magnetically below some Néel temper@ one-dimensional quantum antiferromagnets is based on
ture Ty. The staggered field intensity is proportional to the mapping of these systems to tHe+ 1)-dimensional

the magnitude of the ordered moment " magnetic ~ O(3) nonlinear sigma model (NLSM) with one spatial and
ions and can be controlled in an experiment indirectly,one temporal coordinates. This approach was first intro-
by varying the temperature. One of the most significantuced by Haldane [1] for a Heisenberg antiferromagnetic
results was the first direct measurement of the staggeregpin chain, and later extended to a variety of other systems
magnetization curve/,(H,) of a Haldane spin system [9]. (for a recent review see [11]). Although this mapping is
It was found that of particular value as model systems arbased on a quasiclassical approximation, and in principle
(Nd,Y-,),BaNiOs species, where the effective interac- it should work well only for large spin§ > 1, it gives

tion betweenR and Ni sublattices is of Ising type [10], quantitatively correct predictions for any spin value. In
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the absence of topological term the NLSM Lagrangian irbeing the true spin-wave velocity. To specify this fully

the presence of external (staggered) field can be written asnormalized Lagrangian we need to know the form

1 |: 1 (9@)2 (9@)2 of effective potentialU(|¢|). For small ¢ it can be
dx — vyl —

L = Z’o ax expanded in Taylor series i&z. The quadratic term can

vy \ Ot

be written asA2/2v)¢2, whereA is the true energy gap
+ 2goSﬁs¢]- (1)  of the magnon spectrum. Indeed, the quadratic part of (2)
should describe a triplet of “relativistic” noninteracting
Here ¢ is a three component unit vectop{ = 1), bosons. The spin-wave velocity plays the role of the
pointing in the direction of the local staggered momentspeed of light in its relativistic analog. The above form
vo is the bare spin-wave velocity of the system, apd of the quadratic term correctly reproduces the spin-wave
is the dimensionless parameter, controlling the strengtdispersionE (7w + k) = VA% + v2k2. The relativistic
of quantum fluctuations. Notice that in our notationanalogy also determines the intensity of the magnon pole
the staggered field/, is coupled to the local staggered in the spin correlator as

spin. The staggerednagnetic field Hs(m), coupled to B 7v
local staggered magnetic moment, is proportional to Ssmalg, w) = 5,13%2775[(0 - E@]. @)
H,: gm,uBHﬁ'") = H,, where g, is the g factor of a g
magnetic ion, andup is the Bohr magneton. In a In (1 + 1)dimensions itis convenient to write the Taylor
largeS mapping of the Heisenberg spin chain to theexpansion ofU(|¢|) in terms of the set of dimensionless
NLSM [1] one haswvy = 2JS, and go = 2/S. In a parameters,, defined by
more general situation these parameters should be treated

: : : > A2 (1 - 1 >
as phenomenological constants fine-tuned to give the Ul = —=1o1* + — wlol*
correct low energy properties of the system. The+ 1)- v\ 2 4!
dimensionalO(3) NLSM is always in a disordered state. 1 .
The correlation length in the absence of staggered field + 6! uglpl” + ... . 4)
is given by ¢ ~ aexp2m/go), where a is the lattice )

spacing. The gap in the excitation spectrum is related The effective potential, truncated at thé |* term, cor-

to the correlation length via a usual relatian= /v /£. responds to the Ginzburg-Landau Lagrangian introduced
In order to calculate the macroscopic properties oky Affleck [12] on phenomenological grounds to describe

the system Sl_Jch as its staggered magn_etization Curygaldane-gap systems.

or the excitation spectrum near the antiferromagnetic Thelinear staggered susceptibility at zero external stag-

(AFM) zone center, one needs to coarse grain th@ered field can be derived from the quadratic part of La-

NLSM Lagrangian by integrating out the large and  grangian describing noninteracting magnons. Indeed, the

 (small x and ) degrees of freedom. The change of gypectation value o in the presence of a weak staggered

parameters of the Lagrangian as a result of this coarsgy|q js easily obtained by balancing the quadratic term and

graining is described by the renormalization groupihe source term in Eq. (2). The result is the single mode

(RG) flow equations. In real space the renormalization,onribution to zero-field staggered susceptibility
procedure corresponds to replacing the figldx,¢)

with qB,(x,t) = (‘U/lz) f|x’*x|<l,|t’*t|<l/v q_é(x’,t’)dx/dt/. (y)(o) _ Z_U (5)
It is easy to see that the coarse-grained field vari- X A2
able ¢, no longer has a well defined length. In\yecan compare this prediction to the numerical results for
other words, as a result of coarse graining thehe g — | Heisenberg chain. Using the numerical values
NLS_M eLagranglan, Characterlzeq by a rlgld Con-7 — 126 (g in their notation),v = 2.49J, and A =
straint > = 1, becomes a “soft-spin” Lagrangian. The (417, reported in [13], the single mode approximation
length of coarse-grained field variab{e. has a proba- givesy¥(0) = 18.7/J in excellent agreement with Monte
bility distribution, 'defined by some effectivg potential. carlo resul21(1)/J [14]. This is a manifestation of the
The fully renormallzed*Lagranglan can Ee written as well known fact that in Haldane-gap systems virtually all
1 (oo v [adg > spectral weight at the AFM zone center is concentrated in
L= f dx| =\ o7 ) T o G ) T Ul the magnon triplet.
The main concern of the present paper is tibalinear
+ \/Zﬁq(;s:| (2)  behavior in arbitrary strong staggered fields. In order to
describe these effects quantitatively one needs to know the
In this expression we have introduced trenormalized numerical values of dimensionless couplings, which
staggered field variablep, defined through+/Z ¢ = in principle should depend on the parameters of the bare
S@. The renormalization paramet&rwas fine-tuned to Lagrangian. If, however, the correlation length is suffi-
give the desired form of the derivative terms, with ciently long one can safely assume that these couplings
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are at their RG fixed point values. Fortunately, very ac-
curate numerical values of the universal fixed point cou-

plings us, ug, andug were recently obtained by Pelissetto
and Vicari in [15,16]. They carefully compared the re-
sults of €, 1/N, high temperature, and strong coupling
expansions 0f0(N)-symmetric models ind dimensions
with the results of Monte Carlo simulations. Fér= 2,

N = 3 their estimates argy; = 11.8(1), ug = 3.33(10) X

ui = 460(20), ug = 20(5) X u3 = 33000(8000) [17]. In
[15] the deviations of couplings from their fixed point val-
ues were estimated as,, (¢) — u, () ~ 1/£%. For the

S = 1 Heisenberg antiferromagnet the correlation length

& = 6 (in units of lattice spacing). Therefore, one could
reasonably expect the deviation of, from their fixed
point values to be arount/36 = 3%. This fact is con-
firmed numerically in Fig. 2 of [15].
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FIG. 1. The staggered magnetization curve as deduced from

From the preceding explanation it follows that the quar-neutron powder diffraction data [9] ofiNd,Y,_,),BaNiOs

tic term Al |* used by Affleck [12] to describe the ef-

fects of pairwise magnon repulsion has, in fact, a univer

sal strengthA = (u4/4!) (A%/v) = 0.49A%/v. In their
theoretical study of the effect of the external field on
the excitation spectrum in NENM:(C,HgN,),NO,CIO,]

Mitra and Halperin [18] made a rough estimate of the
value of A. By matching the first term in perturbative ¢

1/H; high field expansion of the magnetization function

with a small H, expansion they have an order of mag-'

(x = 0.25,0.5,1). The effective staggered field is estimated
through a mean-field analysis [9]. The solid line is a single

parameter fit with our theoretical resut™ (0)H, = M,(1 +

1.56M?2 + 2.4M?} + 3.27M?) (see text).

and simplifications regarding the properties of rare earth
ions, and the exact applicability of the mean-field model
n a wide temperature range [9]. The experimentally

nitude estimate, which in our notation corresponds td!€terminedshape of M;(H,), on the other hand, is a

A = ZA?/4v ~ 0.31A%/v rather close to our more re-
fined result.

more robust result and is in excellent agreement with our
theoretical predictions.

The effective potential manifests itself in the staggered '€ €ffective potential also contains information on

magnetization curve of a 1D gapped antiferromagnet. Le
9 Sy g g of a finite staggered field. The magnon excitations are

us select thez axis along the external staggered fiel
The expectation value of the field is defined by the
minimum of the total potential energy (effective potential
plus an external field term) located-dZ H, = U’'({¢.)).
Therefore, the staggered magnetization cuMigH;) is
defined by the equation

(6)

us My
31 Z

Using the numerical estimates fag, ug, us quoted pre-
viously, andZ = 1.26 from [13], for § = 1 chain we ob-
tain y(0)H, = M,(1 + 1.56M? + 2.4M* + 3.27M°).
This result can be directly compared to thé(H,)
curve measured experimentally(Nd,Y-,),BaNiOs [9]
(Fig. 1). The solid line is a fit to the experimental
data with y)(0) being the only adjustable parameter.

We note that the result of the fAte()s()p(O) = 0.53 meV!
differs from the expected valuqfﬁlor(O) = 18.7/J =

Ug M4

N

ug us M
5! 72

7! Z3

{he behavior of the excitation spectrum in the presence

by definition deviations of local staggered magnetization
from its equilibrium value. When th&(3) symmetry

is broken by the external field, the degeneracy of the
magnon triplet is partially lifted. In this case one should
distinguish between the gap, in the longitudinal branch

of 8¢, excitations and the transversal gdp in the
doublet of 6¢,, 6¢, excitations. Both these gaps are
determined by the quadratic terms in the expansion
of Ullg + 8¢l) = Ullgl) + X(A2/2v)5¢2. After
some straightforward algebra one géf$|¢ + S¢|) =
UG[(g) + 8¢ + 847 + 867) = U(o) + U’ X
(P8¢ + [U'DN/2AbI (87 + 87 + [U" X
(¢.))/2]8¢2 The term linear ind¢, is precisely
compensated by-+/Z H;8¢. coming from the external
field term. The above expression for the quadratic
terms in the expansion ol/(|¢ + 8¢) should not
come as a big surprise. Indeed, for the isotropic
system the transversal staggered susceptibility in the
presence of a finite staggered fiel; is given by

X(f)zMX(HS)/HS, while the longitudinal staggered

0.85 meV!. It has to be emphasized, however, that thesusceptibility is X|(|S) = dM,(Hy)/dH;. On the other

experimental scaling of the abscissa in Fig. 1 in units ohand,

in the single mode approximation one has

magnetic field heavily relies on a series of assumptiong ) (H,) = Zv/A%(H,). This argument again fixes the
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3

(27)"'InA. We see that a change in the gApleads
only to the logarithmic change iAi. Such corrections are
disregarded at the precision of our calculations. In (2) the
weak dependence &f on ¢ is reflected in the omission
of the nonlinear terms containing derivativesé®f It is a
well known fact [19] that for small values af this is a
valid approximation. We conclude with the derivation of
an explicit expression for the staggered field dependence
of longitudinal and transversal gaps for= 1 Heisenberg
chain. Plugging the numerical values far, u¢, ug, and

Z in Egs. (7) and (8) we get

A (M) /A

00 01 02 03 04 05 AT(My) _ 1 + 1.56M? + 2.4M* + 3.27M° 9
. . . . ) . AT 56M? AM; 2TM;,  (9)
2

2
FIG. 2. Inelastic neutron scattering data for the relative AII(MS) _ 2 4 6
increase in the energy gap of the Ni-chain magnon as a function A2 L+ 4.68M; + 12M; + 229M;.  (10)

of induced staggered spM, in (Nd,Y;—,),BaNiOs [9]. Solid - .

lines are defined by (9) and (10). The experimental data agre®S Shown in Fig. 2, our prediction for the transversal gap
with the theoretical prediction for thieansversalgap. is in excellent agreement with neutron scattering data on
the (Nd, Y —,),BaNiOs family of compounds [10], with

no adjustable parameters.
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